Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Res Pract Thromb Haemost ; 5(8): e12638, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-2281273

ABSTRACT

BACKGROUND: Pulmonary endothelial injury and microcirculatory thromboses likely contribute to hypoxemic respiratory failure, the most common cause of death, in patients with COVID-19. Randomized controlled trials (RCTs) suggest differences in the effect of therapeutic heparin between moderately and severely ill patients with COVID-19. We did a systematic review and meta-analysis of RCTs to determine the effects of therapeutic heparin in hospitalized patients with COVID-19. METHODS: We searched PubMed, Embase, Web of Science, medRxiv, and medical conference proceedings for RCTs comparing therapeutic heparin with usual care, excluding trials that used oral anticoagulation or intermediate doses of heparin in the experimental arm. Mantel-Haenszel fixed-effect meta-analysis was used to combine odds ratios (ORs). RESULTS AND CONCLUSIONS: There were 3 RCTs that compared therapeutic heparin to lower doses of heparin in 2854 moderately ill ward patients, and 3 RCTs in 1191 severely ill patients receiving critical care. In moderately ill patients, there was a nonsignificant reduction in all-cause death (OR, 0.76; 95% CI, 0.57-1.02), but significant reductions in the composite of death or invasive mechanical ventilation (OR, 0.77; 95% CI, 0.60 0.98), and death or any thrombotic event (OR, 0.58; 95% CI, 0.45-0.77). Organ support-free days alive (OR, 1.29; 95% CI, 1.07-1.57) were significantly increased with therapeutic heparin. There was a nonsignificant increase in major bleeding. In severely ill patients, there was no evidence for benefit of therapeutic heparin, with significant treatment-by-subgroup interactions with illness severity for all-cause death (P = .034). In conclusion, therapeutic heparin is beneficial in moderately ill patients but not in severely ill patients hospitalized with COVID-19.

2.
Pediatr Infect Dis J ; 42(4): 324-331, 2023 04 01.
Article in English | MEDLINE | ID: covidwho-2253622

ABSTRACT

OBJECTIVE: An understanding of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) transmission in schools is important. It is often difficult, using epidemiological information alone, to determine whether cases associated with schools represent multiple introductions from the community or transmission within the school. We describe the use of whole genome sequencing (WGS) in multiple schools to investigate outbreaks of SARS-CoV-2 in the pre-Omicron period. STUDY DESIGN: School outbreaks were identified for sequencing by local public health units based on multiple cases without known epidemiological links. Cases of SARS-CoV-2 from students and staff from 4 school outbreaks in Ontario underwent WGS and phylogenetic analysis. The epidemiological clinical cohort data and genomic cluster data are described to help further characterize these outbreaks. RESULTS: A total of 132 positive SARS-CoV-2 cases among students and staff from 4 school outbreaks were identified with 65 (49%) of cases able to be sequenced with high-quality genomic data. The 4 school outbreaks consisted of 53, 37, 21 and 21 positive cases; within each outbreak there were between 8 and 28 different clinical cohorts identified. Among the sequenced cases, between 3 and 7 genetic clusters, defined as different strains, were identified in each outbreak. We found genetically different viruses within several clinical cohorts. CONCLUSIONS: WGS, together with public health investigation, is a useful tool to investigate SARS-CoV-2 transmission within schools. Its early use has the potential to better understand when transmission may have occurred, can aid in evaluating how well mitigation interventions are working and has the potential to reduce unnecessary school closures when multiple genetic clusters are identified.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Phylogeny , COVID-19/epidemiology , Disease Outbreaks , Schools , Genomics
4.
JAMA Pediatr ; 176(12): 1169-1175, 2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-2084958

ABSTRACT

Importance: Wearing a face mask in school can reduce SARS-CoV-2 transmission but it may also lead to increased hand-to-face contact, which in turn could increase infection risk through self-inoculation. Objective: To evaluate the effect of wearing a face mask on hand-to-face contact by children while at school. Design, Setting, and Participants: This prospective randomized clinical trial randomized students from junior kindergarten to grade 12 at 2 schools in Toronto, Ontario, Canada, during August 2020 in a 1:1 ratio to either a mask or control class during a 2-day school simulation. Classes were video recorded from 4 angles to accurately capture outcomes. Interventions: Participants in the mask arm were instructed to bring their own mask and wear it at all times. Students assigned to control classes were not required to mask at any time (grade 4 and lower) or in the classroom where physical distancing could be maintained (grade 5 and up). Main Outcomes and Measures: The primary outcome was the number of hand-to-face contacts per student per hour on day 2 of the simulation. Secondary outcomes included hand-to-mucosa contacts and hand-to-nonmucosa contacts. A mixed Poisson regression model was used to derive rate ratios (RRs), adjusted for age and sex with a random intercept for class with bootstrapped 95% CIs. Results: A total of 174 students underwent randomization and 171 students (mask group, 50.6% male; control group, 52.4% male) attended school on day 2. The rate of hand-to-face contacts did not differ significantly between the mask and the control groups (88.2 vs 88.7 events per student per hour; RR, 1.00; 95% CI, 0.78-1.28; P = >.99). When compared with the control group, the rate of hand-to-mucosa contacts was significantly lower in the mask group (RR, 0.12; 95% CI, 0.07-0.21), while the rate of hand-to-nonmucosa contacts was higher (RR, 1.40; 95% CI, 1.08-1.82). Conclusions and Relevance: In this clinical trial of simulated school attendance, hand-to-face contacts did not differ among students required to wear face masks vs students not required to wear face masks; however, hand-to-mucosa contracts were lower in the face mask group. This suggests that mask wearing is unlikely to increase infection risk through self-inoculation. Trial Registration: ClinicalTrials.gov Identifier: NCT04531254.


Subject(s)
COVID-19 , Child , Male , Humans , Female , COVID-19/prevention & control , Masks , SARS-CoV-2 , Prospective Studies , Schools , Ontario
5.
BMJ ; 375: n2400, 2021 10 14.
Article in English | MEDLINE | ID: covidwho-1978540

ABSTRACT

OBJECTIVE: To evaluate the effects of therapeutic heparin compared with prophylactic heparin among moderately ill patients with covid-19 admitted to hospital wards. DESIGN: Randomised controlled, adaptive, open label clinical trial. SETTING: 28 hospitals in Brazil, Canada, Ireland, Saudi Arabia, United Arab Emirates, and US. PARTICIPANTS: 465 adults admitted to hospital wards with covid-19 and increased D-dimer levels were recruited between 29 May 2020 and 12 April 2021 and were randomly assigned to therapeutic dose heparin (n=228) or prophylactic dose heparin (n=237). INTERVENTIONS: Therapeutic dose or prophylactic dose heparin (low molecular weight or unfractionated heparin), to be continued until hospital discharge, day 28, or death. MAIN OUTCOME MEASURES: The primary outcome was a composite of death, invasive mechanical ventilation, non-invasive mechanical ventilation, or admission to an intensive care unit, assessed up to 28 days. The secondary outcomes included all cause death, the composite of all cause death or any mechanical ventilation, and venous thromboembolism. Safety outcomes included major bleeding. Outcomes were blindly adjudicated. RESULTS: The mean age of participants was 60 years; 264 (56.8%) were men and the mean body mass index was 30.3 kg/m2. At 28 days, the primary composite outcome had occurred in 37/228 patients (16.2%) assigned to therapeutic heparin and 52/237 (21.9%) assigned to prophylactic heparin (odds ratio 0.69, 95% confidence interval 0.43 to 1.10; P=0.12). Deaths occurred in four patients (1.8%) assigned to therapeutic heparin and 18 patients (7.6%) assigned to prophylactic heparin (0.22, 0.07 to 0.65; P=0.006). The composite of all cause death or any mechanical ventilation occurred in 23 patients (10.1%) assigned to therapeutic heparin and 38 (16.0%) assigned to prophylactic heparin (0.59, 0.34 to 1.02; P=0.06). Venous thromboembolism occurred in two patients (0.9%) assigned to therapeutic heparin and six (2.5%) assigned to prophylactic heparin (0.34, 0.07 to 1.71; P=0.19). Major bleeding occurred in two patients (0.9%) assigned to therapeutic heparin and four (1.7%) assigned to prophylactic heparin (0.52, 0.09 to 2.85; P=0.69). CONCLUSIONS: In moderately ill patients with covid-19 and increased D-dimer levels admitted to hospital wards, therapeutic heparin was not significantly associated with a reduction in the primary outcome but the odds of death at 28 days was decreased. The risk of major bleeding appeared low in this trial. TRIAL REGISTRATION: ClinicalTrials.gov NCT04362085.


Subject(s)
Anticoagulants/therapeutic use , COVID-19/mortality , COVID-19/therapy , Heparin/therapeutic use , Hospitalization/statistics & numerical data , Respiration, Artificial , Biomarkers/blood , Female , Humans , Intensive Care Units/statistics & numerical data , Male , Middle Aged , SARS-CoV-2 , Severity of Illness Index
6.
Eur Heart J Open ; 1(3): oeab025, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1973138

ABSTRACT

Aims: Myocardial injury (MINJ) in Coronavirus disease 2019 (COVID-19) identifies individuals at high mortality risk but its clinical relevance is less well established for Influenza and no comparative analyses evaluating frequency and clinical implications of MINJ among hospitalized patients with Influenza or COVID-19 are available. Methods and results: Hospitalized adults with laboratory confirmed Influenza A or B or COVID-19 underwent highly sensitive cardiac T Troponin (hs-cTnT) measurement at admission in four regional hospitals in Canton Ticino, Switzerland. MINJ was defined as hs-cTnT >14 ng/L. Clinical, laboratory and outcome data were retrospectively collected. The primary outcome was mortality up to 28 days. Cox regression models were used to assess correlations between admission diagnosis, MINJ, and mortality. Clinical correlates of MINJ in both viral diseases were also identified. MINJ occurred in 94 (65.5%) out of 145 patients hospitalized for Influenza and 216 (47.8%) out of 452 patients hospitalized for COVID-19. Advanced age and renal impairment were factors associated with MINJ in both diseases. At 28 days, 7 (4.8%) deaths occurred among Influenza and 76 deaths (16.8%) among COVID-19 patients with a hazard ratio (HR) of 3.69 [95% confidence interval (CI) 1.70-8.00]. Adjusted Cox regression models showed admission diagnosis of COVID-19 [HR 6.41 (95% CI 4.05-10.14)] and MINJ [HR 8.01 (95% CI 4.64-13.82)] to be associated with mortality. Conclusions: Myocardial injury is frequent among both viral diseases and increases the risk of death in both COVID-19 and Influenza. The absolute risk of death is considerably higher in patients admitted for COVID-19 when compared with Influenza.

7.
BMJ ; 378: e069722, 2022 07 06.
Article in English | MEDLINE | ID: covidwho-1932662

ABSTRACT

OBJECTIVE: To evaluate the effectiveness and safety of viscosupplementation for pain and function in patients with knee osteoarthritis. DESIGN: Systematic review and meta-analysis of randomised trials. DATA SOURCES: Searches were conducted of Medline, Embase, and the Cochrane Central Register of Controlled Trials (CENTRAL) databases from inception to 11 September 2021. Unpublished trials were identified from the grey literature and trial registries. ELIGIBILITY CRITERIA FOR STUDY SELECTION: Randomised trials comparing viscosupplementation with placebo or no intervention for knee osteoarthritis treatment. MAIN OUTCOME MEASURES: The prespecified primary outcome was pain intensity. Secondary outcomes were function and serious adverse events. Pain and function were analysed as standardised mean differences (SMDs). The prespecified minimal clinically important between group difference was -0.37 SMD. Serious adverse events were analysed as relative risks. METHODS: Two reviewers independently extracted relevant data and assessed the risk of bias of trials using the Cochrane risk of bias tool. The predefined main analysis was based only on large, placebo controlled trials with ≥100 participants per group. Summary results were obtained through a random effects meta-analysis model. Cumulative meta-analysis and trial sequential analysis under a random effects model were also performed. RESULTS: 169 trials provided data on 21 163 randomised participants. Evidence of small study effects and publication biases was observed for pain and function (Egger's tests with P<0.001 and asymmetric funnel plots). Twenty four large, placebo controlled trials (8997 randomised participants) included in the main analysis of pain indicated that viscosupplementation was associated with a small reduction in pain intensity compared with placebo (SMD -0.08, 95% confidence interval -0.15 to -0.02), with the lower bound of the 95% confidence interval excluding the minimal clinically important between group difference. This effect corresponds to a difference in pain scores of -2.0 mm (95% confidence interval -3.8 to -0.5 mm) on a 100 mm visual analogue scale. Trial sequential analysis for pain indicated that since 2009 there has been conclusive evidence of clinical equivalence between viscosupplementation and placebo. Similar conclusions were obtained for function. Based on 15 large, placebo controlled trials on 6462 randomised participants, viscosupplementation was associated with a statistically significant higher risk of serious adverse events than placebo (relative risk 1.49, 95% confidence interval 1.12 to 1.98). CONCLUSION: Strong conclusive evidence indicates that viscosupplementation leads to a small reduction in knee osteoarthritis pain compared with placebo, but the difference is less than the minimal clinically important between group difference. Strong conclusive evidence indicates that viscosupplementation is also associated with an increased risk of serious adverse events compared with placebo. The findings do not support broad use of viscosupplementation for the treatment of knee osteoarthritis. SYSTEMATIC REVIEW REGISTRATION: PROSPERO CRD42021236894.


Subject(s)
Osteoarthritis, Knee , Viscosupplementation , Humans , Viscosupplementation/adverse effects , Osteoarthritis, Knee/drug therapy , Pain Measurement , Pain/drug therapy
8.
Revista Española de Cardiología ; 2022.
Article in English | ScienceDirect | ID: covidwho-1821464

ABSTRACT

The True Infection Rate (TIR) in the whole population of each country and the Infection Fatality Rate (IFR) for coronavirus disease 2019 (COVID-19) are unknown although they are important parameters. We devised a simple method to infer TIR and IFR based on the open data. The prevalence rate of the polymerase chain reaction (PCR) tests among the population (Examination Rate;ER) and the positive rate of PCR tests (Infection Rate;IR) for 66 countries were picked up at a website 5 times from April 10th to June 13th, 2020, and the trajectory of each country was drawn over the IR vs. ER plot. IR and ER showed a strong negative correlation for some countries, and TIR was estimated by extrapolating the regression line when the correlation coefficient was between -0.99 and -1. True/Identified Case Ratio (TICR) and IFR were also calculated using the estimated TIR. The estimated TIR well coincided with local antibody surveys. Estimated IFR took on a wide range of values up to 10%: generally high in the Western countries. The estimated IFR of Singapore was very low (0.018%), which may be related to the reported gene mutation causing the attenuation of the viral virulence.

9.
Fam Med Community Health ; 9(4)2021 12.
Article in English | MEDLINE | ID: covidwho-1626835

ABSTRACT

OBJECTIVE: To evaluate the effect of a one-time cash transfer of $C1000 in people who are unable to physically distance due to insufficient income. DESIGN: Open-label, multi-centre, randomised superiority trial. SETTING: Seven primary care sites in Ontario, Canada; six urban sites associated with St. Michael's Hospital in Toronto and one in Manitoulin Island. PARTICIPANTS: 392 individuals who reported trouble affording basic necessities due to disruptions related to COVID-19. INTERVENTION: After random allocation, participants either received the cash transfer of $C1000 (n=196) or physical distancing guidelines alone (n=196). MAIN OUTCOME MEASURES: The primary outcome was the maximum number of symptoms consistent with COVID-19 over 14 days. Secondary outcomes were meeting clinical criteria for COVID-19, SARS-CoV-2 presence, number of close contacts, general health and ability to afford basic necessities. RESULTS: The primary outcome of number of symptoms reported by participants did not differ between groups after 2 weeks (cash transfer, mean 1.6 vs 1.9, ratio of means 0.83; 95% CI 0.56 to 1.24). There were no statistically significant effects on secondary outcomes of the meeting COVID-19 clinical criteria (7.9% vs 12.8%; risk difference -0.05; 95% CI -0.11 to 0.01), SARS-CoV-2 presence (0.5% vs 0.6%; risk difference 0.00 95% CI -0.02 to 0.02), mean number of close contacts (3.5 vs 3.7; rate ratio 1.10; 95% CI 0.83 to 1.46), general health very good or excellent (60% vs 63%; risk difference -0.03 95% CI -0.14 to 0.08) and ability to make ends meet (52% vs 51%; risk difference 0.01 95% CI -0.10 to 0.12). CONCLUSIONS: A single cash transfer did not reduce the COVID-19 symptoms or improve the ability to afford necessities. Further studies are needed to determine whether some groups may benefit from financial supports and to determine if a higher level of support is beneficial. TRIAL REGISTRATION NUMBER: NCT04359264.


Subject(s)
COVID-19 , Financial Statements , Humans , Ontario/epidemiology , Pandemics/prevention & control , SARS-CoV-2
10.
Family medicine and community health ; 9(4), 2021.
Article in English | EuropePMC | ID: covidwho-1567643

ABSTRACT

Objective To evaluate the effect of a one-time cash transfer of $C1000 in people who are unable to physically distance due to insufficient income. Design Open-label, multi-centre, randomised superiority trial. Setting Seven primary care sites in Ontario, Canada;six urban sites associated with St. Michael’s Hospital in Toronto and one in Manitoulin Island. Participants 392 individuals who reported trouble affording basic necessities due to disruptions related to COVID-19. Intervention After random allocation, participants either received the cash transfer of $C1000 (n=196) or physical distancing guidelines alone (n=196). Main outcome measures The primary outcome was the maximum number of symptoms consistent with COVID-19 over 14 days. Secondary outcomes were meeting clinical criteria for COVID-19, SARS-CoV-2 presence, number of close contacts, general health and ability to afford basic necessities. Results The primary outcome of number of symptoms reported by participants did not differ between groups after 2 weeks (cash transfer, mean 1.6 vs 1.9, ratio of means 0.83;95% CI 0.56 to 1.24). There were no statistically significant effects on secondary outcomes of the meeting COVID-19 clinical criteria (7.9% vs 12.8%;risk difference −0.05;95% CI −0.11 to 0.01), SARS-CoV-2 presence (0.5% vs 0.6%;risk difference 0.00 95% CI −0.02 to 0.02), mean number of close contacts (3.5 vs 3.7;rate ratio 1.10;95% CI 0.83 to 1.46), general health very good or excellent (60% vs 63%;risk difference −0.03 95% CI −0.14 to 0.08) and ability to make ends meet (52% vs 51%;risk difference 0.01 95% CI −0.10 to 0.12). Conclusions A single cash transfer did not reduce the COVID-19 symptoms or improve the ability to afford necessities. Further studies are needed to determine whether some groups may benefit from financial supports and to determine if a higher level of support is beneficial. Trial registration number NCT04359264.

11.
CMAJ ; 193(24): E921-E930, 2021 06 14.
Article in French | MEDLINE | ID: covidwho-1551317

ABSTRACT

CONTEXTE: Les interventions non pharmacologiques demeurent le principal moyen de maîtriser le coronavirus du syndrome respiratoire aigu sévère 2 (SRAS-CoV-2) d'ici à ce que la couverture vaccinale soit suffisante pour donner lieu à une immunité collective. Nous avons utilisé des données de mobilité anonymisées de téléphones intelligents afin de quantifier le niveau de mobilité requis pour maîtriser le SRAS-CoV-2 (c.-à-d., seuil de mobilité), et la différence par rapport au niveau de mobilité observé (c.-à-d., écart de mobilité). MÉTHODES: Nous avons procédé à une analyse de séries chronologiques sur l'incidence hebdomadaire du SRAS-CoV-2 au Canada entre le 15 mars 2020 et le 6 mars 2021. Le paramètre mesuré était le taux de croissance hebdomadaire, défini comme le rapport entre les cas d'une semaine donnée et ceux de la semaine précédente. Nous avons mesuré les effets du temps moyen passé hors domicile au cours des 3 semaines précédentes à l'aide d'un modèle de régression log-normal, en tenant compte de la province, de la semaine et de la température moyenne. Nous avons calculé le seuil de mobilité et l'écart de mobilité pour le SRAS-CoV-2. RÉSULTATS: Au cours des 51 semaines de l'étude, en tout, 888 751 personnes ont contracté le SRAS-CoV-2. Chaque augmentation de 10 % de l'écart de mobilité a été associée à une augmentation de 25 % du taux de croissance des cas hebdomadaires de SRAS-CoV-2 (rapport 1,25, intervalle de confiance à 95 % 1,20­1,29). Comparativement à la mobilité prépandémique de référence de 100 %, le seuil de mobilité a été plus élevé au cours de l'été (69 %, écart interquartile [EI] 67 %­70 %), et a chuté à 54 % pendant l'hiver 2021 (EI 52 %­55 %); un écart de mobilité a été observé au Canada entre juillet 2020 et la dernière semaine de décembre 2020. INTERPRÉTATION: La mobilité permet de prédire avec fiabilité et constance la croissance des cas hebdomadaires et il faut maintenir des niveaux faibles de mobilité pour maîtriser le SRAS-CoV-2 jusqu'à la fin du printemps 2021. Les données de mobilité anonymisées des téléphones intelligents peuvent servir à guider le relâchement ou le resserrement des mesures de distanciation physique provinciales et régionales.


Subject(s)
COVID-19/prevention & control , Geographic Mapping , Mobile Applications/standards , Patient Identification Systems/methods , COVID-19/epidemiology , COVID-19/transmission , Canada/epidemiology , Humans , Mobile Applications/statistics & numerical data , Patient Identification Systems/statistics & numerical data , Quarantine/methods , Quarantine/standards , Quarantine/statistics & numerical data , Regression Analysis , Time Factors
12.
JAMA Netw Open ; 4(8): e2121867, 2021 08 02.
Article in English | MEDLINE | ID: covidwho-1375583

ABSTRACT

Importance: Postoperative atrial fibrillation (POAF) occurring after cardiac surgery is associated with adverse outcomes. Whether POAF persists beyond discharge is not well defined. Objective: To determine whether continuous cardiac rhythm monitoring enhances detection of POAF among cardiac surgical patients during the first 30 days after hospital discharge compared with usual care. Design, Setting, and Participants: This study is an investigator-initiated, open-label, multicenter, randomized clinical trial conducted at 10 Canadian centers. Enrollment spanned from March 2017 to March 2020, with follow-up through September 11, 2020. As a result of the COVID-19 pandemic, enrollment stopped on July 17, 2020, at which point 85% of the proposed sample size was enrolled. Cardiac surgical patients with CHA2DS2-VASc (congestive heart failure, hypertension, age ≥75 years, diabetes, prior stroke or transient ischemic attack, vascular disease, age 65-74 years, female sex) score greater than or equal to 4 or greater than or equal to 2 with risk factors for POAF, no history of preoperative AF, and POAF lasting less than 24 hours during hospitalization were enrolled. Interventions: The intervention group underwent continuous cardiac rhythm monitoring with wearable, patch-based monitors for 30 days after randomization. Monitoring was not mandated in the usual care group within 30 days after randomization. Main Outcomes and Measures: The primary outcome was cumulative AF and/or atrial flutter lasting 6 minutes or longer detected by continuous cardiac rhythm monitoring or by a 12-lead electrocardiogram within 30 days of randomization. Prespecified secondary outcomes included cumulative AF lasting 6 hours or longer and 24 hours or longer within 30 days of randomization, death, myocardial infarction, ischemic stroke, non-central nervous system thromboembolism, major bleeding, and oral anticoagulation prescription. Results: Of the 336 patients randomized (163 patients in the intervention group and 173 patients in the usual care group; mean [SD] age, 67.4 [8.1] years; 73 women [21.7%]; median [interquartile range] CHA2DS2-VASc score, 4.0 [3.0-4.0] points), 307 (91.4%) completed the trial. In the intent-to-treat analysis, the primary end point occurred in 32 patients (19.6%) in the intervention group vs 3 patients (1.7%) in the usual care group (absolute difference, 17.9%; 95% CI, 11.5%-24.3%; P < .001). AF lasting 6 hours or longer was detected in 14 patients (8.6%) in the intervention group vs 0 patients in the usual care group (absolute difference, 8.6%; 95% CI, 4.3%-12.9%; P < .001). Conclusions and Relevance: In post-cardiac surgical patients at high risk of stroke, no preoperative AF history, and AF lasting less than 24 hours during hospitalization, continuous monitoring revealed a significant increase in the rate of POAF after discharge that would otherwise not be detected by usual care. Studies are needed to examine whether these patients will benefit from oral anticoagulation therapy. Trial Registration: ClinicalTrials.gov Identifier: NCT02793895.


Subject(s)
Atrial Fibrillation/diagnosis , Atrial Flutter/diagnosis , Cardiac Surgical Procedures/adverse effects , Electrocardiography, Ambulatory/methods , Mass Screening/methods , Patient Discharge , Postoperative Complications/diagnosis , Aged , Atrial Fibrillation/etiology , Atrial Flutter/etiology , COVID-19 , Canada , Cardiovascular Diseases/complications , Cardiovascular Diseases/surgery , Electrocardiography , Female , Hemorrhage , Hospitalization , Humans , Intention to Treat Analysis , Ischemic Attack, Transient , Male , Pandemics , Risk Factors , Stroke , Thromboembolism
13.
JAMA ; 326(3): 257-265, 2021 07 20.
Article in English | MEDLINE | ID: covidwho-1338165

ABSTRACT

Importance: Extenuating circumstances can trigger unplanned changes to randomized trials and introduce methodological, ethical, feasibility, and analytical challenges that can potentially compromise the validity of findings. Numerous randomized trials have required changes in response to the COVID-19 pandemic, but guidance for reporting such modifications is incomplete. Objective: As a joint extension for the CONSORT and SPIRIT reporting guidelines, CONSERVE (CONSORT and SPIRIT Extension for RCTs Revised in Extenuating Circumstances) aims to improve reporting of trial protocols and completed trials that undergo important modifications in response to extenuating circumstances. Evidence: A panel of 37 international trial investigators, patient representatives, methodologists and statisticians, ethicists, funders, regulators, and journal editors convened to develop the guideline. The panel developed CONSERVE following an accelerated, iterative process between June 2020 and February 2021 involving (1) a rapid literature review of multiple databases (OVID Medline, OVID EMBASE, and EBSCO CINAHL) and gray literature sources from 2003 to March 2021; (2) consensus-based panelist meetings using a modified Delphi process and surveys; and (3) a global survey of trial stakeholders. Findings: The rapid review yielded 41 673 citations, of which 38 titles were relevant, including emerging guidance from regulatory and funding agencies for managing the effects of the COVID-19 pandemic on trials. However, no generalizable guidance for all circumstances in which trials and trial protocols might face unanticipated modifications were identified. The CONSERVE panel used these findings to develop a consensus reporting guidelines following 4 rounds of meetings and surveys. Responses were received from 198 professionals from 34 countries, of whom 90% (n = 178) indicated that they understood the concept definitions and 85.4% (n = 169) indicated that they understood and could use the implementation tool. Feedback from survey respondents was used to finalize the guideline and confirm that the guideline's core concepts were applicable and had utility for the trial community. CONSERVE incorporates an implementation tool and checklists tailored to trial reports and trial protocols for which extenuating circumstances have resulted in important modifications to the intended study procedures. The checklists include 4 sections capturing extenuating circumstances, important modifications, responsible parties, and interim data analyses. Conclusions and Relevance: CONSERVE offers an extension to CONSORT and SPIRIT that could improve the transparency, quality, and completeness of reporting important modifications to trials in extenuating circumstances such as COVID-19.


Subject(s)
COVID-19 , Guidelines as Topic , Randomized Controlled Trials as Topic/standards , Research Report/standards , Clinical Protocols , Delphi Technique , Humans , Publishing/standards , Surveys and Questionnaires
14.
Ann Epidemiol ; 63: 63-67, 2021 11.
Article in English | MEDLINE | ID: covidwho-1326908

ABSTRACT

Shelter-in-place mandates and closure of nonessential businesses have been central to COVID19 response strategies including in Toronto, Canada. Approximately half of the working population in Canada are employed in occupations that do not allow for remote work suggesting potentially limited impact of some of the strategies proposed to mitigate COVID-19 acquisition and onward transmission risks and associated morbidity and mortality. We compared per-capita rates of COVID-19 cases and deaths from January 23, 2020 to January 24, 2021, across neighborhoods in Toronto by proportion of the population working in essential services. We used person-level data on laboratory-confirmed COVID-19 community cases and deaths, and census data for neighborhood-level attributes. Cumulative per-capita rates of COVID-19 cases and deaths were 3.3-fold and 2.5-fold higher, respectively, in neighborhoods with the highest versus lowest concentration of essential workers. Findings suggest that the population who continued to serve the essential needs of society throughout COVID-19 shouldered a disproportionate burden of transmission and deaths. Taken together, results signal the need for active intervention strategies to complement restrictive measures to optimize both the equity and effectiveness of COVID-19 responses.


Subject(s)
COVID-19 , Epidemics , Canada , Humans , Occupations , SARS-CoV-2
15.
CMAJ ; 193(17): E592-E600, 2021 04 26.
Article in English | MEDLINE | ID: covidwho-1207650

ABSTRACT

BACKGROUND: Nonpharmaceutical interventions remain the primary means of controlling severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) until vaccination coverage is sufficient to achieve herd immunity. We used anonymized smartphone mobility measures to quantify the mobility level needed to control SARS-CoV-2 (i.e., mobility threshold), and the difference relative to the observed mobility level (i.e., mobility gap). METHODS: We conducted a time-series study of the weekly incidence of SARS-CoV-2 in Canada from Mar. 15, 2020, to Mar. 6, 2021. The outcome was weekly growth rate, defined as the ratio of cases in a given week versus the previous week. We evaluated the effects of average time spent outside the home in the previous 3 weeks using a log-normal regression model, accounting for province, week and mean temperature. We calculated the SARS-CoV-2 mobility threshold and gap. RESULTS: Across the 51-week study period, a total of 888 751 people were infected with SARS-CoV-2. Each 10% increase in the mobility gap was associated with a 25% increase in the SARS-CoV-2 weekly case growth rate (ratio 1.25, 95% confidence interval 1.20-1.29). Compared to the prepandemic baseline mobility of 100%, the mobility threshold was highest in the summer (69%; interquartile range [IQR] 67%-70%), and dropped to 54% in winter 2021 (IQR 52%-55%); a mobility gap was present in Canada from July 2020 until the last week of December 2020. INTERPRETATION: Mobility strongly and consistently predicts weekly case growth, and low levels of mobility are needed to control SARS-CoV-2 through spring 2021. Mobility measures from anonymized smartphone data can be used to guide provincial and regional loosening and tightening of physical distancing measures.


Subject(s)
COVID-19 Testing/trends , COVID-19/prevention & control , Disease Transmission, Infectious/prevention & control , COVID-19/epidemiology , Canada/epidemiology , Female , Forecasting , Humans , Incidence , Interrupted Time Series Analysis , Male , Physical Distancing , Public Health , Quarantine/trends
16.
Trials ; 22(1): 224, 2021 Mar 22.
Article in English | MEDLINE | ID: covidwho-1147039

ABSTRACT

BACKGROUND: Post-exposure prophylaxis (PEP) is a well-established strategy for the prevention of infectious diseases, in which recently exposed people take a short course of medication to prevent infection. The primary objective of the COVID-19 Ring-based Prevention Trial with lopinavir/ritonavir (CORIPREV-LR) is to evaluate the efficacy of a 14-day course of oral lopinavir/ritonavir as PEP against COVID-19 among individuals with a high-risk exposure to a confirmed case. METHODS: This is an open-label, multicenter, 1:1 cluster-randomized trial of LPV/r 800/200 mg twice daily for 14 days (intervention arm) versus no intervention (control arm), using an adaptive approach to sample size calculation. Participants will be individuals aged > 6 months with a high-risk exposure to a confirmed COVID-19 case within the past 7 days. A combination of remote and in-person study visits at days 1, 7, 14, 35, and 90 includes comprehensive epidemiological, clinical, microbiologic, and serologic sampling. The primary outcome is microbiologically confirmed COVID-19 infection within 14 days after exposure, defined as a positive respiratory tract specimen for SARS-CoV-2 by polymerase chain reaction. Secondary outcomes include safety, symptomatic COVID-19, seropositivity, hospitalization, respiratory failure requiring ventilator support, mortality, psychological impact, and health-related quality of life. Additional analyses will examine the impact of LPV/r on these outcomes in the subset of participants who test positive for SARS-CoV-2 at baseline. To detect a relative risk reduction of 40% with 80% power at α = 0.05, assuming the secondary attack rate in ring members (p0) = 15%, 5 contacts per case and intra-class correlation coefficient (ICC) = 0.05, we require 110 clusters per arm, or 220 clusters overall and approximately 1220 enrollees after accounting for 10% loss-to-follow-up. We will modify the sample size target after 60 clusters, based on preliminary estimates of p0, ICC, and cluster size and consider switching to an alternative drug after interim analyses and as new data emerges. The primary analysis will be a generalized linear mixed model with logit link to estimate the effect of LPV/r on the probability of infection. Participants who test positive at baseline will be excluded from the primary analysis but will be maintained for additional analyses to examine the impact of LPV/r on early treatment. DISCUSSION: Harnessing safe, existing drugs such as LPV/r as PEP could provide an important tool for control of the COVID-19 pandemic. Novel aspects of our design include the ring-based prevention approach, and the incorporation of remote strategies for conducting study visits and biospecimen collection. TRIAL REGISTRATION: This trial was registered at www.ClinicalTrials.gov ( NCT04321174 ) on March 25, 2020.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19/prevention & control , Lopinavir/therapeutic use , Post-Exposure Prophylaxis/methods , Ritonavir/therapeutic use , Drug Combinations , Hospitalization , Humans , Randomized Controlled Trials as Topic , SARS-CoV-2 , Severity of Illness Index , Treatment Outcome
17.
Trials ; 22(1): 202, 2021 Mar 10.
Article in English | MEDLINE | ID: covidwho-1127720

ABSTRACT

OBJECTIVES: To determine the effect of therapeutic anticoagulation, with low molecular weight heparin (LMWH) or unfractionated heparin (UFH, high dose nomogram), compared to standard care in hospitalized patients admitted for COVID-19 with an elevated D-dimer on the composite outcome of intensive care unit (ICU) admission, non-invasive positive pressure ventilation, invasive mechanical ventilation or death up to 28 days. TRIAL DESIGN: Open-label, parallel, 1:1, phase 3, 2-arm randomized controlled trial PARTICIPANTS: The study population includes hospitalized adults admitted for COVID-19 prior to the development of critical illness. Excluded individuals are those where the bleeding risk or risk of transfusion would generally be considered unacceptable, those already therapeutically anticoagulated and those who have already have any component of the primary composite outcome. Participants are recruited from hospital sites in Brazil, Canada, Ireland, Saudi Arabia, United Arab Emirates, and the United States of America. The inclusion criteria are: 1) Laboratory confirmed COVID-19 (diagnosis of SARS-CoV-2 via reverse transcriptase polymerase chain reaction as per the World Health Organization protocol or by nucleic acid based isothermal amplification) prior to hospital admission OR within first 5 days (i.e. 120 hours) after hospital admission; 2) Admitted to hospital for COVID-19; 3) One D-dimer value above the upper limit of normal (ULN) (within 5 days (i.e. 120 hours) of hospital admission) AND EITHER: a. D-Dimer ≥2 times ULN OR b. D-Dimer above ULN and Oxygen saturation ≤ 93% on room air; 4) > 18 years of age; 5) Informed consent from the patient (or legally authorized substitute decision maker). The exclusion criteria are: 1) pregnancy; 2) hemoglobin <80 g/L in the last 72 hours; 3) platelet count <50 x 109/L in the last 72 hours; 4) known fibrinogen <1.5 g/L (if testing deemed clinically indicated by the treating physician prior to the initiation of anticoagulation); 5) known INR >1.8 (if testing deemed clinically indicated by the treating physician prior to the initiation of anticoagulation); 6) patient already prescribed intermediate dosing of LMWH that cannot be changed (determination of what constitutes an intermediate dose is to be at the discretion of the treating clinician taking the local institutional thromboprophylaxis protocol for high risk patients into consideration); 7) patient already prescribed therapeutic anticoagulation at the time of screening [low or high dose nomogram UFH, LMWH, warfarin, direct oral anticoagulant (any dose of dabigatran, apixaban, rivaroxaban, edoxaban)]; 8) patient prescribed dual antiplatelet therapy, when one of the agents cannot be stopped safely; 9) known bleeding within the last 30 days requiring emergency room presentation or hospitalization; 10) known history of a bleeding disorder of an inherited or active acquired bleeding disorder; 11) known history of heparin-induced thrombocytopenia; 12) known allergy to UFH or LMWH; 13) admitted to the intensive care unit at the time of screening; 14) treated with non-invasive positive pressure ventilation or invasive mechanical ventilation at the time of screening; 15) Imminent death according to the judgement of the most responsible physician; 16) enrollment in another clinical trial of antithrombotic therapy involving hospitalized patients. INTERVENTION AND COMPARATOR: Intervention: Therapeutic dose of LMWH (dalteparin, enoxaparin, tinzaparin) or high dose nomogram of UFH. The choice of LMWH versus UFH will be at the clinician's discretion and dependent on local institutional supply. Comparator: Standard care [thromboprophylactic doses of LMWH (dalteparin, enoxaparin, tinzaparin, fondaparinux)] or UFH. Administration of LMWH, UFH or fondaparinux at thromboprophylactic doses for acutely ill hospitalized medical patients, in the absence of contraindication, is generally considered standard care. MAIN OUTCOMES: The primary composite outcome of ICU admission, non-invasive positive pressure ventilation, invasive mechanical ventilation or death at 28 days. Secondary outcomes include (evaluated up to day 28): 1. All-cause death 2. Composite of ICU admission or all-cause death 3. Composite of mechanical ventilation or all-cause death 4. Major bleeding as defined by the ISTH Scientific and Standardization Committee (ISTH-SSC) recommendation; 5. Red blood cell transfusion (>1 unit); 6. Transfusion of platelets, frozen plasma, prothrombin complex concentrate, cryoprecipitate and/or fibrinogen concentrate; 7. Renal replacement therapy; 8. Hospital-free days alive; 9. ICU-free days alive; 10. Ventilator-free days alive; 11. Organ support-free days alive; 12. Venous thromboembolism (defined as symptomatic or incidental, suspected or confirmed via diagnostic imaging and/or electrocardiogram where appropriate); 13. Arterial thromboembolism (defined as suspected or confirmed via diagnostic imaging and/or electrocardiogram where appropriate); 14. Heparin induced thrombocytopenia; 15. Trajectories of COVID-19 disease-related coagulation and inflammatory biomarkers. RANDOMISATION: Randomisation will be stratified by site and age (>65 versus ≤65 years) using a 1:1 computer-generated random allocation sequence with variable block sizes. Randomization will occur within the first 5 days (i.e. 120 hours) of participant hospital admission. However, it is recommended that randomization occurs as early as possible after hospital admission. Central randomization using an interactive web response system will ensure allocation concealment. BLINDING (MASKING): No blinding involved. This is an open-label trial. NUMBERS TO BE RANDOMISED (SAMPLE SIZE): 462 patients (231 per group) are needed to detect a 15% risk difference, from 50% in the control group to 35% in the experimental group, with power of 90% at a two-sided alpha of 0.05. TRIAL STATUS: Protocol Version Number 1.4. Recruitment began on May 11th, 2020. Recruitment is expected to be completed March 2022. Recruitment is ongoing. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT04362085 Date of Trial Registration: April 24, 2020 FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest of expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol.


Subject(s)
Anticoagulants/therapeutic use , Blood Coagulation Disorders/drug therapy , COVID-19 Drug Treatment , Blood Coagulation Disorders/blood , Blood Coagulation Disorders/complications , COVID-19/blood , COVID-19/complications , COVID-19/physiopathology , Clinical Trials, Phase III as Topic , Fibrin Fibrinogen Degradation Products/metabolism , Heparin/therapeutic use , Heparin, Low-Molecular-Weight/therapeutic use , Hospitalization , Humans , Intensive Care Units/statistics & numerical data , Noninvasive Ventilation/statistics & numerical data , Pragmatic Clinical Trials as Topic , Randomized Controlled Trials as Topic , Respiration, Artificial/statistics & numerical data , SARS-CoV-2
18.
Ann Intern Med ; 174(4): 533-539, 2021 04.
Article in English | MEDLINE | ID: covidwho-1073725

ABSTRACT

Public health interventions implemented during the coronavirus disease 2019 (COVID-19) pandemic are based on experience gained from past pandemics. The 1918 influenza pandemic is the most extensively researched historical influenza outbreak. All 9335 reports available in the State Archives on 121 152 cases of influenza-like illness from the canton of Bern from 473 of 497 municipalities (95.2%) were collected; the cases were registered between 30 June 1918 and 30 June 1919. The overall incidence rates of newly registered cases per week for the 9 greater regions of Bern for both the first and second waves of the pandemic were calculated. Relative incidence rate ratios (RIRRs) were calculated to estimate the change in the slope of incidence curves associated with public health interventions. During the first wave, school closures (RIRR, 0.16 [95% CI, 0.15 to 0.17]) and restrictions of mass gatherings (RIRR, 0.57 [CI, 0.54 to 0.61]) were associated with a deceleration of epidemic growth. During the second wave, in autumn 1918, cantonal authorities initially reacted hesitantly and delegated the responsibility to enact interventions to municipal authorities, which was associated with a lack of containment of the second wave. A premature relaxation of restrictions on mass gatherings was associated with a resurgence of the epidemic (RIRR, 1.18 [CI, 1.12 to 1.25]). Strikingly similar patterns were found in the management of the COVID-19 outbreak in Switzerland, with a considerably higher amplitude and prolonged duration of the second wave and much higher associated rates of hospitalization and mortality.


Subject(s)
Communicable Disease Control/history , Influenza, Human/history , Influenza, Human/prevention & control , Pandemics/history , Public Health/history , History, 20th Century , Humans , Incidence , Influenza, Human/epidemiology , Switzerland/epidemiology
19.
Sci Total Environ ; 770: 145319, 2021 May 20.
Article in English | MEDLINE | ID: covidwho-1049883

ABSTRACT

Curtailing the Spring 2020 COVID-19 surge required sweeping and stringent interventions by governments across the world. Wastewater-based COVID-19 epidemiology programs have been initiated in many countries to provide public health agencies with a complementary disease tracking metric and non-discriminating surveillance tool. However, their efficacy in prospectively capturing resurgences following a period of low prevalence is unclear. In this study, the SARS-CoV-2 viral signal was measured in primary clarified sludge harvested every two days at the City of Ottawa's water resource recovery facility during the summer of 2020, when clinical testing recorded daily percent positivity below 1%. In late July, increases of >400% in normalized SARS-CoV-2 RNA signal in wastewater were identified 48 h prior to reported >300% increases in positive cases that were retrospectively attributed to community-acquired infections. During this resurgence period, SARS-CoV-2 RNA signal in wastewater preceded the reported >160% increase in community hospitalizations by approximately 96 h. This study supports wastewater-based COVID-19 surveillance of populations in augmenting the efficacy of diagnostic testing, which can suffer from sampling biases or timely reporting as in the case of hospitalization census.


Subject(s)
COVID-19 , Cities , Hospitalization , Humans , RNA, Viral , Retrospective Studies , SARS-CoV-2 , Wastewater
20.
CMAJ ; 192(44): E1374-E1382, 2020 11 02.
Article in French | MEDLINE | ID: covidwho-967336

ABSTRACT

CONTEXTE: On ignore si les variations climatiques saisonnières, la fermeture des établissements scolaires ou d'autres interventions de santé publique entraîneront un ralentissement de la pandémie actuelle de maladie à coronavirus 2019 (COVID-19). Nous avons voulu déterminer si de façon globale la progression de l'épidémie est associée au climat ou aux interventions de santé publique visant à réduire la transmission du coronavirus du syndrome respiratoire aigu sévère 2 (SRAS-CoV-2). MÉTHODES: Nous avons procédé à une étude de cohorte prospective des 144 régions géopolitiques de la planète (375 609 cas) présentant au moins 10 cas de COVID-19, avec transmission locale, en date du 20 mars 2020, à l'exclusion de la Chine, de la Corée du Sud, de l'Iran et de l'Italie. Par analyse de régression à effets aléatoires pondérée, nous avons évalué le lien entre la progression de l'épidémie (exprimée sous forme de rapports de taux d'incidence [RTI] comparant les nombres cumulatifs de cas de COVID-19 du 27 mars 2020 à ceux du 20 mars 2020) avec les facteurs de latitude, température, humidité, fermeture des établissements scolaires, interdiction des grands rassemblements et mesures d'éloignement social qui étaient en place les 7 et 13 mars 2020 (période de 14 jours antérieure à l'évaluation). RÉSULTATS: Les analyses univariées ont révélé aucuns lien entre la progression de l'épidémie et les facteurs de latitude et de température, mais des liens négatifs faibles avec l'humidité relative (RTI par 10 %, 0,91, intervalle de confiance [IC] de 95 % 0,85­0,96) et l'humidité absolue (RTI par 5 g/m3 0,92, IC à 95 % 0,85­0,99). Des liens étroits ont été observés avec l'interdiction des grands rassemblements (RTI 0,65, IC à 95 % 0,53­0,79), la fermeture des établissements scolaires (RTI 0,63, IC à 95 % 0,52­0,78) et les mesures d'éloignement social (RTI 0,62, IC à 95 % 0,45­0,85). Dans un modèle multivarié, on a noté un lien étroit avec le nombre de mesures déployées par la santé publique (p pour tendance = 0,001), tandis que le lien avec l'humidité absolue s'atténuait. INTERPRÉTATION: La progression de l'épidémie de COVID-19 ne s'est pas révélée en lien avec la latitude ni avec la température, mais faiblement en lien avec l'humidité relative ou absolue. À l'inverse, les interventions de santé publique ont été étroitement associées à un ralentissement de la progression de l'épidémie.

SELECTION OF CITATIONS
SEARCH DETAIL